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The van der Waals theory of nematic liquids

By MarTHA A. COTTER
Department of Chemistry, Rutgers — The State University,
New Brunswick, New Jersey 08540, U.S.A.

AL B

This paper describes the van der Waals theory of nematic liquids, an approximate
molecular theory in which very short-range intermolecular repulsions are approximated
by hard-rod exclusions, and somewhat longer-ranged intermolecular attractions are
subject to a self-consistent mean-field treatment. The rationale, underlying assump-
tions, idealizations and approximations of the theory are presented in detail and the
numerical results so far reported are summarized, together with the results of extensive
new calculations, which provide a quite accurate test of the theory in its present state.
Finally, the current status of the theory, its relative strengths and weaknesses, and the
prospects for extending and improving it are discussed.

THE ROYAL
SOCIETY

1. INTRODUCTION

A nematic mesophase is a very complex condensed system for which relatively little is known
about the precise form of the intermolecular pair potential. It is therefore clearly impossible to
devise a realistic molecular theory of nematogens. Instead, any tractable molecular theory of
these systems must incorporate a number of rather severe idealizations or approximations. What
sort of idealized model or statistical mechanical approximations to invoke depends on the
purpose for which the theory is intended.

At present, the most important aspects of nematic mesomorphism which need to be addressed
by molecular theories are (1) the nature of the nematic—isotropic (N-I) and the nematic—smectic
A (5-N) phase transitions and (2) the relation between molecular structure and the stability
and properties of nematic mesophases. For investigating critical phenomena in the vicinity of
the N-T or S-N transition temperatures, the molecular details of the model system are presum-
ably not important as long as the model Hamiltonian has the correct symmetry. On the other
hand, it is important that the statistical mechanics be done as accurately as possible. In this case,
therefore, one can profitably use a very highly idealized model system such as an array of point
particles on a three-dimensional lattice interacting through a nearest-neighbour pair potential
— JPy(cos b;;), where J is a positive constant, P, is the Legendre polynomial of order 2, and 0.
is the angle between the unit vectors @; and a;, which characterize the ‘orientations’ of particles
¢ and j respectively. On the other hand, such a simple model is clearly inadequate for investi-
gating the relation between molecular structure and the stability and properties of nematic
phases. For this purpose, a more ‘chemical’ model is needed, i.e. a model for which it is a rela-
tively straightforward task to build in what is known abcut the size, shape, flexibility, polarity,
polarizability, etc. of a particular nematogen. The van der Waals theory of nematic liquids is
intended to be such a ‘chemist’s’ theory. Conversely, it is not designed for the study of critical
phenomena in nematogenic systems.

In addition to being a ‘chemist’s’ approach, the van der Waals theory may be viewed as a
hybrid of what were once the two rival theoretical approaches to nematogens: (1) the Maier—
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128 MARTHA A. COTTER

Saupe theory (Maier & Saupe 1959, 1960) and its extensions and modifications (see Luckhurst
(1979) for a review of Maier—-Saupe-type theories) and (2) the so-called ‘hard-rod’ theories of
nematics (see Cotter (1979a) for a review of hard-rod theories). In the former it was assumed that
nematic order results primarily from the anisotropy of the intermolecular attractions, particularly
London dispersion forces, and these attractions were treated in the mean-field approximation.
In the latter it was assumed that nematic order results primarily from excluded volume effects,
and model systems of hard (i.e. infinitely impenetrable) rod-like objects were therefore used. In
the van der Waals theory, the model molecules have hard cores as in hard-rod theories, but they
also exhibit anisotropic intermolecular attractions, and the latter are treated in the mean-field
approximation. The need for hybrid theories incorporating both anisotropic intermolecular
repulsions and attractions was made clear over the years by a variety of experimental results.

Finally, the van der Waals theory of nematogens is a historical and logical descendant of the
van der Waals theory of simple liquids, which employed a model system of hard spheres in a
spatially uniform mean-field arising from intermolecular attractions. This approach was used
quite successfully by Longuet-Higgins & Widom (1964) to calculate the thermodynamic
properties of liquid argon near its triple point. This success leads one to hope that a similar
approach with the use of rod-like molecular hard cores and an orientation-dependent mean field
can be used successfully to treat nematic liquids.

The basic assumptions, idealizations and approximations of the van der Waals theory are
described in §2 of this paper, and the numerical results so far obtained are summarized in §3.
Finally, the current status of the theory and the prospects for improving and extending it are
discussed in §4.

2. Basic ASSUMPTIONS, IDEALIZATIONS AND APPROXIMATIONS

The van der Waals theory of nematic liquids, like the van der Waals theory of simple liquids,
is based on three underlying assumptions: (1) that the structure of a liquid far from the gas-liquid
critical point is largely determined by very short-ranged intermolecular repulsions; (2) that these
repulsions may satisfactorily be approximated by hard-core exclusions; and (3) that the primary
role of the somewhat longer-ranged intermolecular attractions (dispersion forces, etc.) is—to a
first approximation — to provide a negative, spatially uniform mean field in which the molecules
move. For simple liquids, assumptions (1) and (2) are clearly reasonable, since the radial
distribution function for liquid argon is barely distinguishable from that of a fluid of hard spheres
of appropriate radius. Moreover, the suitability of assumption (3) can be inferred from the
success of Longuet-Higgins & Widom’s calculations for liquid argon. Since nematic liquids
differ from isotropic liquids only in their exhibition of long-range orientational order, it would
seem that these underlying assumptions should also be reasonable for nematogens. In practice,
of course, applying the van der Waals approach to a nematic liquid is more complicated and
risky than applying it to a simple liquid owing to the difficulty in choosing an appropriate shape
for the molecular hard cores for a particular nematogen and the necessity to consider molecular
orientations as well as positions.

Van der Waals theories of nematics based on rod-like molecular hard cores and an orientation-
dependent mean field have been devised by Cotter (19774) and Gelbart & Baron (1977). In the
former instance, an empirical mean-field pseudo-potential of the Maier—Saupe type was used.
In the generalized van der Waals theory of Gelbart & Baron, on the other hand, the mean-field
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THE VAN DER WAALS THEORY OF NEMATIC LIQUIDS 129

pseudo-potential was calculated from an assumed intermolecular pair potential in a self-consistent
manner. A more compact and straightforward derivation of the generalized van der Waals
theory was later presented by Cotter (19775).

In this paper, the statistical mechanical derivation of the van der Waals theory will not be
presented, because it is available elsewhere. (The interested reader is referred to the original
papers of Gelbart & Baron (1977) and Cotter (19774, b) or to the review chapter by Cotter
(19795).) Instead, the idealizations and approximations of the theory will be described in detail
and the final results of the statistical mechanical manipulations will then be presented.

Without further introduction, therefore, the idealizations and approximations of the van der
Waals theory of nematogens are described below.

1. Molecular flexibility is neglected; i.e. the dependence of the potential energy of the system
on the intramolecular conformational coordinates of the molecules is neglected and a nematogen
is modelled as an inflexible object with some average or effective shape. The potential energy of
interaction between two molecules 7 and j is thus assumed to depend only on the orientations
Q; and Q; of the two molecules and on the vector r;; between their centres. Specifically, the
N-body potential energy is assumed to be additive pairwise and the intermolecular pair potential
v is assumed to have the form

(1‘ ‘Q 'Q) = vrep(rij39i’ ‘Qy) +vatt(rzjag 'Q) (1)

15
where vy, is a very short-range repulsive potential and v,4, is a somewhat longer-ranged attrac-
tive potential.
2. The very short-range intermolecular repulsions are approximated by hard-core exclusions;
i.e. it is assumed that

VUrep(Tijs 245 825) = v¥ (14,2, 2;)

5> 9>

( oo if the hard cores of ¢ and j would overlap;

N }\0 otherwise.

3. Therod-like molecular hard cores are taken to have cylindrical symmetry. £ thus represents
a set of two angles, the polar angle # and the azimuthal angle ¢, which specify the orientation of a
cylindrical molecular axis with respect to a space-fixed coordinate system.

4. Intermolecular attractions are treated via the mean-field approximation; i.e. the attractions
between a molecule with orientation 2 and all the other molecules are approximated collectively
by the interaction of the given molecule with a spatially uniform mean field described by the
pseudo-potential (2, p). As noted above, two different approaches have been used to evaluate
the pseudo-potential (£, p).

(a) In the empirical approach first used by Cotter (1977a), the pseudo-potential was assumed
to have the simple functional form

Y (Q,p) = —vop—vyp7,Fy(cos 0), (2)
where p is the number density, », and v, are positive constants, 0 is the angle between the
cylindrical axis of the molecular hard core and the nematic director (taken to be parallel to the
z axis of the space-fixed coordinate system), P, is the Legendre polynomial of order 2, and 7,,
the traditional nematic order parameter, is the average value of P,(cosf)). From a statistical
mechanical point of view,

7y = ff P,(cos0)d (3)
[ 59 ]
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130 MARTHA A. COTTER

where f(£2) is the normalized one-body orientational distribution function formally defined by
the statement that /() dQ is the fraction of molecules with orientations between £ and 2 +dQ.
In this approach, v, and v, are treated as adjustable parameters and no attempt is made to
calculate the ratio v,/v, from an assumed intermolecular pair potential. Finally, it should be
noted that the linear dependence of ¥ on p is required for statistical mechanical self-consistency
(Cotter 1977¢).

(b) Inthe generalized van der Waals theory of Gelbart & Baron (1977), the mean-field pseudo-
potential ¥ is related to the intermolecular pair potential by the equation

7(2,p) = pfd!?'f (@) f Ry, (1, 0, Q) dr

=» [as@)10,9), (4)

where f = 1/kT (k is Boltzmann’s constant) and r is the vector connecting the centres of two
molecules with orientations £ and £’ respectively. Since v* can have only two values, zero or
infinity, the Boltzmann factor e=#*" serves only to exclude from the range of integration over r
all values of r that correspond to overlap of the hard cores of the two given molecules. It is
therefore clear that in evaluating ¥, all short-range correlations between pairs of molecules are
neglected except for the requirement that their hard cores not overlap.

5. The contribution of the molecular hard cores to the free energy of the system is calculated
by using scaled particle theory, an approximate statistical mechanical theory of fluids of hard
particles. (See below for an outline of this approach.)

Having made assumptions 1-4 above, it can be shown that the Helmholtz free energy
functional for the model system is given by

NAF(@)) = N2 AXJ(@) +1 [ f@)F(2) de, (5)

where A*{f(£22)} is the free energy functional for a system of hard rods constrained to have
orientational distribution function f(£2). The most convenient cylindrically symmetric shape to
choose for the molecular hard cores is a spherocylinder (i.e. a right circular cylinder capped on
each end by a hemisphere of the same radius) because the mutual exclusion volume of two
spherocylinders has a particularly simple dependence on their orientations. One is then con-
fronted by the task of evaluating the Helmholtz free energy of a fluid of hard spherocylinders.
This clearly cannot be done exactly. Furthermore, no computer simulation of a system of three-
dimensional hard rods, spherocylindrical or otherwise, has succeeded in observing a nematic
phase. (There have been successful Monte Carlo simulations for isotropic fluids of hard sphero-
cylinders (see below), but at the high densities apparently required to observe the nematic phase,
convergence of the Monte Carlo computations becomes impracticably slow.) Thus some
approximate statistical mechanical method must be used to evaluate 4*{ f(£2)}. As noted above,
in the work so far on the van der Waals theory, the approach used has almost always been scaled
particle theory.

Scaled particle theory is an approximate statistical mechanical theory of fluids of hard particles
first developed by Reiss ef al. (1959) to treat systems of hard spheres. For fluids of both hard
spheres and hard discs, its predictions agree very well with the results of Monte Carlo and
molecular dynamics computer simulations. The theory has been extended to treat systems of hard
spherocylinders by a number of authors (Cotter & Martire 19704, 4; Lasher 1970; Timling 1974;
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THE VAN DER WAALS THEORY OF NEMATIC LIQUIDS 131

Cotter 1974, 19774). Although the precise mathematical expressions derived for A*{ f(£2)} differ
somewhat among these various versions of the theory, the numerical results obtained differ very
little. In what follows, the version of Cotter (19774) will be discussed for concreteness.

In this version, the central quantity of scaled particle theory for a fluid of hard spherocylinders
of radius a and cylindrical length [ is the work function W(a, A, £2), which is defined as the
reversible work necessary to add a scaled spherocylinder of radius aa, cylindrical length A/, and
orientation £ to the system at an arbitrary fixed point. This quantity is related to the chemical
potential of the system by the exact relation

1= aen = T [ /(@) nanf @142+ [ £2) W(1,1,p) de. (6)

Although an exact expression for W(a, A, 2), valid for all & and A, cannot be derived, the exact
limiting behaviour of W is known for very small and very large scaled spherocylinders, i.e.
Iim W(a,A,2) = —kTn (1—1v,p),
Ao
where vy = ma?/+%mna? is the volume of a hard spherocylinder, and
lim W(a, A, Q) = P{n(aa)?Al+4n(xa)?},
A—w
where P is the external pressure. (The latter limit simply recognizes the fact that when the scaled
spherocylinder becomes very large, W must equal the reversible thermodynamic work of
building a macroscopic cavity in the fluid.) Between these two limits, one approximates
W (a, A, 2) by using the interpolation formula
W, A, 2) = —In (1 —vyp) +C1(£2,a,1,p) a+Cy(£2,a,l,p) A
+C4(2,a,1,p) ad+Coo(2, a,l, p) a?+ (nalfP) a?A + ($na®fP) a®, (7)

where C;; = (¢!51) 71 (04D fW /0atONT) , g 0. (The derivatives needed to calculate Cyg, Gy, Cyy
and C,, can be evaluated exactly.) The equilibrium thermodynamic properties of the system can
then be obtained from W (1, 1) f J(2) W(1,1,02)dQ2. When the equation of state obtained in
this manner for an isotropic ﬂuld of hard spherocylinders is compared with that calculated from
computer simulations (Vieillard-Baron 1974; Monson & Rigby 1978), it is found that the
agreement is quite good at low to moderate densities, but that the scaled particle predictions for
Pvy/(kT) become significantly and increasingly too large at reduced densities (vyp) of order 0.50.
For example, for the highest reduced densities at which the computer simulations were carried
out for spherocylinders with length: width ratio x = 3 (Vieillard-Baron 1974), namely v,p = 0.50
and vyp = 0.54, the scaled particle results are too high by 17.3 9 and 23.5 %, respectively. For
spherocylinders with x = 2, on the other hand, the highest reduced density considered in the
computer simulations (Monson & Rigby 1978) was vyp = 0.5096, and the scaled particle
prediction is too high by 7.9 9/ at that point. These discrepancies between theory and computer
‘experiment’ for the isotropic phase at high densities suggest that the use of scaled particle theory
may be a significant source of error in the van der Waals theory. Finding a more accurate but
tractable method of evaluating 4*{ f(£)} is, however, a quite difficult task.

When the expression for 4*{ f(£2)} derived from this version of scaled particle theory is inserted
in (5), the final result for the van der Waals free energy functional is

AL _ o fanf () /(1 -+ G L 00

+3A(a, 4, p) (([siny (2,27 5) + (24 T)‘lff(Q) ¥(Q)de, (8)
[ 61]



http://rsta.royalsocietypublishing.org/

A
‘/\

A\

A A

JA

7\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

132 MARTHA A. COTTER
where _ 4na® _ak 2= 4rvyp{1 — 1(1 = q) vyp}
3v 7 v’ (1—2op)* ’
(In {anf (Q)}y = f.fm) In {4rf(2)} 42, (9)

(Jsiny]yy = f [lsiny(@, @)l7@r@) d0ag,

and y (2, 2') is the angle between directions £2 and £'. The orientational distribution function,
f(£2), is obtained by minimization of the free energy functional. The result is the nonlinear
integral equation

£(@) = Coxp| - (@) +2(a L) [ a2 7 (@) sy 2, 2], (10)

where C is a normalization factor.

3. SUMMARY OF RESULTS
(a) Results obtained by using an empivical pseudo-potential

Cotter (1977a) carried out extensive calculations for a model system with hard-core length:
width ratio ¥ = [/2a+1 = 3 and compared the results with experimental data for the much-
studied nematogen p-azoxyanisole (PAA). The hard-core volume v, was taken to be 0.230nm?
and the mean field pseudo-potential was assumed to have the form (2) with v,/ (v,k) = 25000 K
and v,/ (vok) = 2000 K. The choices for x and v, were suggested by Vieillard-Baron (1974), based
on estimates from tabulated bond lengths and van der Waals radii. On the other hand, the para-
meters v, and v, were chosen to reproduce the experimental values of the transition temperature
Tx1 and the quantity 7 = —p(07,/0p) p/ T(09,/3T), at Ty for PAA. (The latter is a measure
of the relative sensitivity of the order parameter 9, to changes in p against changes in 7".) In
addition to those described above, one further approximation was introduced, namely

siny (2, 2)3) ~ im—Fymad, (11)
which is obtained by expanding |sin y| in even-order Legendre polynomials P, (cos y), averaging
term by term, and then truncating the resulting series after its second term. This should be a
reasonably good approximation for relatively small values of 7,, but not for values of 7, close to
unity. For hard spherocylinders with x = 3, it lowers the predicted values of the order parameter
75 by roughly 25 % but changes only slightly the densities of the coexisting phases at the N-I
transition. It greatly simplifies the integral equation (10) for f/(£2), which becomes

F(2) = Cexp{A(p, T) 1y Pycos )} = —— 0 T)maBy{cos O}

- ;o (12)
21er exp {A(p, T') 5y Py(cos 0)}sin 0 dO
0

where Alp, T) = FnA(a,l,p) +v,/kT. (13)
Determination of f(£2) thus reduces to solving iteratively for 7, by using the self-consistency
condition

f " P,(cos 0) exp [A(p, T) 7, Py(cos 0)] sin 0d0
_Jo

1= [ £(@) Pcost) ag (14)

f “exp[A(p, T) 7, Py(cos 0)] sin 0 d6
0

To summarize the results of these calculations, it can be said that quite satisfactory qualitative
but not quantitative agreement with experiment was obtained. The theory predicts 9,~7" curves
[ 62 ]
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THE VAN DER WAALS THEORY OF NEMATIC LIQUIDS 133

(at constant P or constant p) of roughly the correct shape, nearly linear plots of In 7" against In p
at constant 7, with slopes close to 4 (in agreement with the data of McColl & Shih (1972)),
increases in Ty with increasing P of the correct order of magnitude, and large pre-transitional
increases in the compressibility, expansivity and specific heat as Ty is approached from below.
(For more details, see Cotter (19774).) On the other hand, the N-I phase transition is predicted
to be much too strongly first-order, as can be seen from the first two columns of table 1.

TABLE 1. VALUES OF VARIOUS QUANTITIES AT THE N-I PHASE TRANSITION AS PREDICTED BY THE
VAN DER WAALS THEORY WITH THE EMPIRICAL MEAN FIELD POTENTIAL

(2, p) = —1op—vyp1a Py(cos 6)

(P = 1 atm (ca. 10° Pa) in all cases.)

experimental
data for theoretical predictions

quantity PAAT x = 3% x = 1.75% x = 1.75§
{vo/ (0,k)}/108 K — 2.50 5.42 5.38
vy /v — 0.0800 0.0326 0.0324
To/K 409 410 409 409
UoPuom 0.62 0.445 0.62 0.62
AP/Prem 0.0035 0.040 0.0057 0.0070
AS/(NEk) 0.17 0.887 0.508 0.62
T 0.36 0.542 0.455 0.499

T 4.0 3.9 3.9 3.9

(dTx1/dP) p_y aem/ (K /kbar]|) 48 175 30 31

1 For the references from which these values were taken, see Savithramma & Madhusudana (19825).
1 Calculated by using a two-term expansion of {{|sin y|)).

§ Calculated by using a six-term expansion of {({|sin y|)).

|| 1 kbar = 105 Pa.

Significantly better agreement with experimental data for PAA can be obtained by using
length: width ratios less than 3, as was shown by Savithramma & Madhusudana (1980),
who considered various model systems with x = 1.0 to x = 2.45. They again assumed that
v = 0.230 nm3 but chose values of v, and v, at each value of x to reproduce the experimental
values of 7"and vy e at the N-I transition. Best results were obtained for x = 1.75; these values
are given in column 2 of table 1. As can be seen, the overall agreement between theory and
experiment is rather good.

Finally, Savithramma & Madhusudana (19824) recently redid their calculations with the
truncated two-term expansion for {{|sin y|)) replaced by the first six terms in the exact expansion
of this quantity. Their results for a system with x = 1.75 are given in column 4 of table 1. As can
be seen, including the higher order terms in the expansion of {{|siny|)) increases Ap/pyems 72
and AS/Nk by 23, 9.7 and 22 9 respectively, but agreement with experiment is still rather good.
In addition to determining the properties of model systems with various values of x at P = 1 atm
(¢a. 105 Pa), they also calculated the properties of a system with x = 1.75 for pressures up to
650 MPa and obtained semiquantitative agreement with experimental data on PAA at high
pressures.

(b) Results from the generalized van der Waals theory

As noted previously, the expression for (£, p) in the generalized van der Waals theory is (4).
Evaluation of the integral I(£,2’) in this equation is a rather formidable problem in solid
geometry because it requires the characterization of the surface S(y) that separates the allowed

[ 63 ]
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and forbidden values of the vector r between the centres of two molecules with orientations £
and Q' respectively (i.e. S(y) is the surface traced out by the centre of a hard spherocylinder with
fixed orientation 2’ as it moves about another hard spherocylinder with fixed orientation £ in
such a way that the two particles are always in contact). S(y) was characterized analytically by
Gelbart & Gelbart (1977), who then evaluated I(y) numerically for a range of values of the
dimensions ¢ and / of the spherocylindrical hard cores.

The first numerical test of the generalized van der Waals approach was reported by Baron &
Gelbart (1977), who considered model systems with hard-core length: width ratios x in the range
1.0-4.2 and with attractive potentials

Vagt(1,Y) = — iso/"6 ~ Caniso €OS? (7)/763 (15)

where Ciy, and G, 54, are positive constants. To avoid solving the nonlinear integral equation (10),
they introduced two new approximations, namely

F(2) = cosh (acos 0) / J: cosh (a cos 8) sin 6 d6, (16)

where a is determined by minimization of the free energy, and

() = Ao+ 473 (17)

Equation (16) is a one-parameter variational approximation for f(£2) first suggested by Onsager
(1949); (17) is obtained by expanding /(y) in even-order Legendre polynomials, averaging term
by term, and then truncating the resulting series after its second term. Gelbart & Gelbart (1977)
showed that the latter is a good approximation ¢f (16) is valid and 7, is of order 0.5. However, the
very large values of 7, actually obtained by Baron & Gelbart cast considerable doubt on the
validity of this truncation. More importantly, the use of the Onsager approximation (16) clearly
introduced substantial error into the calculations, as can be seen by comparing Baron & Gelbart’s
results for hard spherocylinders with x = 3 at the N-I transition (3, = 0.96, vgPpem = 0.707) with
the corresponding numbers obtained by Cotter (1979a) with the use of the numerical solution of
the scaled particle integral equation for f(2) (3, ~ 0.64, vyPpey ~ 0.55). Thus although Baron &
Gelbart reported some interesting trends in 7y, ASy; and the densities of the coexisting phases
at Ty as vy, ¥ and Cy,, are varied, it is clear that their results do not constitute a definitive test of
the generalized van der Waals theory. Further calculations with a more accurate representation
of f(2) were clearly needed.

To provide a more accurate test of the generalized van der Waals approach, I have quite
recently carried out a series of calculations based on model systems with hard-core length: width
ratios, ¥, of 1.5, 2.0 and 3.0, and intermolecular attractive potentials with the simple form

Vagg = —6o/78 — €3 Py(cosy) [r8 = —eo{1+Py(cosy)} /7, (18)

where ¢, and ¢, are positive constants and & = €,/e,. The results are reported here for the first time.
With this choice for v,;, the integral equation (10) can be written

Inf(£) = InC- fd!?'f(Q') {Aa,1, p) |siny (2,2)| + (p/kT) 1(2, 2')}, (19)
where I(02,02") = I(y) = —e{1 +0P,(cos y)}fe‘/"”*('ﬂ’)r‘“dr
= —eo{l +0Py(cosy)} Lo(7). (20)
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This nonlinear integral equation was solved numerically by expanding In f(£) in even-order
Legendre polynomials through Pyy(cos 6), i.e. by assuming that

/(Q) = X FyPulcost), (21)

and solving iteratively for the coefficients F; to Fy,. This requires knowing the first 11 coeflicients
in the Legendre expansions of |siny| and Z,(y), i.e. the first 11 coefficients B, and D,,, where

jsiny] = 3 B,Pyy(cos) (22
and Ii(y) = %;‘, P,,(cosy). (23)

The B, are easily determined analytically; the D,, were obtained by numerical integration with
the use of the two-dimensional integral representation of Iy(y) derived by Gelbart & Gelbart
(197%7). To calculate the reduced density v,p and the coeflicients F,, at a particular temperature 7'
and external pressure P,,;, one can solve (19) simultaneously with

(T, vop) = Pextvo/kT, (24)
where IT( T, v,p) is the van der Waals expression for Pv,/k T, namely

77 = Yol L +20p +8(0op)* (1 49— 3¢%) + 2o p{1 + (1 +29) vop} ([sin ¥ )]
(1=25p)°

_&(vop)?

LI, (25
Convergence of the iterative procedure is, however, rather slow. Much faster convergence can be
obtained by fixing P,,, and the coefficient F, (rather than P, and 7") and solving for T, v,p and
the remaining F,, by using (19), (24) and the exact relation

B = —{A(a,1,p) By +pD,[kT} ;. (26)
(This can be derived by substituting the Legendre expansions for Inf(), |siny|, and I(y) in
(19), integrating over £’ term by term, and then equating the coeﬁ’iments of Py(cos ) on each
side of the resulting equation.) The latter was the procedure actually used in the computations.
Once the values of F, to Fy,, 1, to 49, Uyp and T were determined for a nematic phase with
the specified P and F}, the chemical potential y, entropy S, Helmholtz free energy 4, and internal
energy U were calculated. Equation (25) with {{|siny|)) = B, = inand {{I(y))) = D, was then
solved iteratively for the density of an isotropic phase with the same 7" and P as the nematic
phase in question and g, S, 4 and U were calculated for this isotropic phase. The N-I phase
transition was located by searching for the value of F, such that g, and the corresponding g,
are equal. Finally, the quantity 7 = —p(d7,/3p) 7/ T(09,/0T), was evaluated by numerical
differentiation and (d7y;/dP) p =14, was evaluated by using the Clausius—Clapeyron equation.
The results obtained in this manner are summarized in tables 2—4.

The properties of three model systems with x = 1.5, 2 and 3 respectively at the N-I transition
at P = latm are given in table 2. In each case, v, was taken to be 0.230 nm3, ¢, was set equal to
zero (i.e., v,y was taken to be isotropic) and e, was chosen to obtain an N-I transition temperature
of approximately 409 K. The relevant experimental data for PAA are again given for purposes of
comparison. As can be seen, the agreement with experiment is atrociously poor when x = 3, still
rather poor when x = 2, and respectable, but not terribly impressive, when x = 1.5. Clearly, in
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TABLE 2. VALUES OF VARIOUS QUANTITIES AT THE N—] PHASE TRANSITION AS PREDICTED BY THE
GENERALIZED VAN DER WAALS THEORY WITH Upyy = —€,/7%

(P = 1 atm in all cases.)

experimental
data for theoretical predictions
quantity PAA x=3 x =2 x=15
{vo/ (kuya®)}/ 104 K — 7.60 7.73 10.7
T/K 409 408.6 408.4 408.8
Yo Poem 0.62 0.450 0.456 0.559
AP/ Prem 0.0035 0.481 0.116 0.015
AS/(Nk) 0.17 6.99 2.65 1.07
U 0.36 0.974 0.816 0.607
T 0.07 0.919 0.572 0.284
T 3.9 1.61 1.65 1.64
(dTx1/dP)p — 1 am/ (K /kbar) 48 497 184 44

its present form the generalized van der Waals theory greatly exaggerates the degree of orienta-
tional order in the nematic phase and the strength of the first-order N-I transition, even when an
isotropic attractive potential v,y is used. The mathematical origins of this behaviour can be
inferred from table 3, which lists the values of the coefficients F), in the expansion of Inf(£2), the
order parameters 7,,, and the coefficients D, in the expansion of I(y) for these three model
systems. When § = 0, the mean field pseudo-potential is given by

V(20) = oo [ F(2) ) 2

10
X — Py §0Dn772np2n((:089)‘ (27)

It is therefore clear that the pseudo-potentials calculated from the generalized van der Waals
theory are much more strongly orientation dependent than the sort of empirical ¥’s that yield
the best agreement with experiment. This very strong favouring of alignment results in large
values of the order parameters #,, 7,, etc., in the nematic phase and these high order parameters,
together with the relatively large values of Dy, D,, etc., yield large order-dependent terms in the
internal energy U of the system. To be slightly more quantitative, let us define an anisotropy

£ ={U(1)-U(0)3/U(0), (28)

where U(1) and U(0) are, respectively, the internal energies of a perfectly ordered nematic
phase and of an isotropic phase at density p and temperature 7. For the three model systems
described in tables 2 and 3, with x = 3, 2 and 1.5, the values of £ are 0.679, 0.365 and 0.133
respectively. On the other hand, for the model systems described in table 1 (with empirical
pseudo-potentials), £ = 0.080 (x = 3) and £ = 0.032 (x = 1.75).

The effects of adding an anisotropic term proportional to P,(cosy) to v, can be seen in
table 4, which compares model systems with ¥ = 1.5 and four values of §: 0, 0.01, 0.05 and 0.10.
In each case, ¢, was chosen to yield T; = 409 K. From this table it is clear that, on the whole, the
agreement between theory and experiment becomes worse as ¢ increases. This is not surprising
because the van der Waals mean field potential is already too strongly orientation-dependent
when & = 0.

parameter by the relation
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TaBLE 3. THE COEFFICIENTS F, AND D, AND THE ORDER PARAMETERS 7),, FOR
THE MODEL SYSTEMS IN TABLE 2

(F, is the coefficient of P,,(cos 0) in the Legendre expansion of In f(2) and D, is the coefficient of
P,,(cos y) in the Legendre expansion of I(y).)

x=3 x =2 x =15
r A N r A N - A \
n Fn asDn 7727» Fn asDn 7727: Fn asDn 7727»
0 — 0.16984 1.00000 — 0.22688 1.00000 —_ 0.30499 1.00000
1 5.8219 0.04191 0.97429 3.83640 0.04234 0.81598 2.69633 0.02556 0.60653
2 247460 0.02554 0.91931 0.95666 0.01666 0.57174 0.32925 0.00682 0.28467
3 1.32693 0.01582 0.84305 0.29929 0.00836 0.36157 0.05784 0.00299 0.11364
4 0.76661 0.01044 0.75404 0.10373 0.00494 0.21295 0.01166 0.00167 0.04081
5 0.46425 0.00730 0.65981 0.03811 0.00325 0.11911 0.00249 0.00107 0.01363
6 0.29082 0.00536 0.56627 0.01444 0.00229 0.06410 0.00055 0.00074 0.00432
7 0.18648 0.00409 0.47764 0.00560 0.00170 0.03348 0.00012 0.00055 0.00132
8 0.12125 0.00321 0.39660 0.00220 0.00131 0.01707 0.00003 0.00042 0.00039
9 0.07991 0.00259 0.32458 0.00088 0.00105 0.00854 6x10-¢ 0.00033 0.00011
10 0.05300 0.00213 0.26210 0.00036 0.00087 0.00042 1%x10-6 0.00027 0.00003

TABLE 4. VALUES OF VARIOUS QUANTITIES AT THE N—I PHASE TRANSITION AS PREDICTED BY THE
GENERALIZED VAN DER WAALS THEORY WITH v,y = — (€,/7°) {1+ 0F5(cos y)}

(P = 1 atm in all cases.)

experimental
data for theoretical predictions for x = 1.5

quantity PAA §d=0 ¢ = 0.01 # = 0.05 6 =0.10
{60/ (kvga®)}/ 104 K — 10.7 9.92 7.83 6.37
Twi/K 409 408.8 408.7 408.8 408.8
Yoo 0.62 0.559 0.547 0.506 0.468
AP /Puer 0.0035 0.0153 0.0165 0.0230 0.0347
AS/(Nk) 0.17 1.07 1.04 1.01 1.07
B 0.36 0.607 0.593 0.569 0.567
Na 0.07 0.284 0.269 0.239 0.233
T 3.9 1.64 1.57 1.39 1.28
(AT1/dP)p — 1 i/ (K /kbar) 48 44 50 78 121

4. CONCLUSIONS AND FUTURE PROSPECTS
(a) Discussion of results

As is clear from the results presented in §3, the van der Waals approach can yield rather good
agreement with experiment if one uses an empirical mean field potential with two adjustable
parameters v, and v, and one chooses a hard-core length: width ratio somewhat smaller than one
might guess a priori. On the other hand, when one uses the generalized van der Waals theory, in
which the mean field pseudo-potential ¥(£, p) is calculated from an assumed intermolecular
pair potential in a self-consistent manner, the agreement between theory and experiment is much
less impressive. All of the idealizations and approximations inherent in the generalized van der
Waals theory no doubt contribute to its quantitative deficiencies. In my opinion, however, in
order of decreasing probable importance, the most serious defects of the theory in its present form
are: (1) the neglect of short-range orientational order in the evaluation of (£, p), (2) the use of
cylindrically symmetric molecular hard cores, and (3) the use of scaled particle theory to evaluate
A*{f(2)}. The evidence suggesting that the use of scaled particle theory may be a significant
source of error was presented in § 2. The reasons for believing that the neglect of short-range order
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and the use of spherocylindrical hard cores have even more serious consequences are discussed in
turn below.

In §2 it was noted that all short-range translational and orientational order is neglected in the
evaluation of ¥ (£, p), except for the enforcement of the requirement that molecular hard cores
not overlap. More precisely, in performing the averaging over r and 2" in (4), it is assumed that
the density of molecules with orientation £ at position r relative to the centre of a molecule with
orientation £ has only two values: it is equal to zero within the surface S(y) on which e=#**®.v
changes from 0 to 1; otherwise it is equal to pf(£2’), even for values of r just outside S(y). Given
the success of the van der Waals theory of simple liquids, it would appear that the neglect of
short-range translational order in the calculation of the mean field potential is a reasonable
approximation. On the other hand, neglecting the strong short-range orientational order that no
doubt exists in both nematic and isotropic phases of rod-like molecules may well have serious
thermodynamic consequences. Intuitively one would expect the neglect of short-range orienta-
tional correlations when evaluating ¥ to lead to (1) an overestimate of the degree of long-range
orientational order in the nematic phase (in the absence of short-range orientational order, the
only way that neighbouring molecules can be strongly aligned and thus minimize their energy of
interaction is for there to be very strong long-range orientational order present), (2) an energetic
‘discrimination’ against the isotropic phase, and (3) an exaggeration of the difference between
anematic and an isotropic phase at a given 7 and p. To obtain a rough estimate of the magnitude
of these effects I have redone the van der Waals calculations for two model systems with x = 2
and x = 3 respectively, using a very crude and highly arbitrary procedure for incorporating the
effects of short-range orientational order into the evaluation of ¥/(£, p). Specifically, the pro-
cedure used when averaging v, (7, 2, 2') over r and £’ was to define a spherocylindrical volume
of radius 24(1+a) and cylindrical length [/ surrounding the molecule with orientation £ and
then to assume that all molecules whose centres lie within this volume also have orientation L.
(Outside this spherocylindrical volume, the density of molecules with orientation £’ was again
assumed to be e=#** pf(£2’).) For both systems considered, a was set equal to //(8a), which means
that the radius 2¢(1 +«) is midway between the respective distances of closest approach of two
parallel and two perpendicular hard spherocylinders of radius 2 and cylindrical length /. The
results of these revised calculations are given in table 5, from which it is clear that the incor-
poration of short-range order — however crudely and arbitrarily it was done — leads to dramati-
cally improved agreement with experiment. This argues quite strongly that the neglect of
short-range orientational order in the evaluation of ¥/(£2, p) is a serious source of error in the
generalized van der Waals theory.

Real nematogenic molecules clearly do not have cylindrically symmetric shapes. None the
less, given the statistically free rotation about the molecular long axis in nematic liquids, it
might seem that the use of spherocylindrical molecular hard cores is a reasonable approximation.
However, calculations by a number of authors (Shih & Alben 1972; Straley 1974; Luckhurst
et al. 1975), with the use of a variety of approximate theoretical approaches, suggest that the
assumption of cylindrical molecular symmetry leads to significant overestimates of the degree
of order in the nematic phase and of the discontinuities in p, H, S, 7,, etc., at the N-I transition.
Most recently, for example, Gelbart & Barboy considered systems of hard ellipsoids of revolution
(Gelbart & Barboy 1979) and of hard parallelepipeds (Gelbart & Barboy 1980) with principal
axes of length a, b and ¢, constrained to lie with their longest axis parallel to one of the six axial
directions of a space-fixed Cartesian coordinate system. In both instances they calculated the
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nematic order parameter 7, yy and the relative density change Ap/ppey, at the N-I transition as
a function of 4 /a with ¢/a held equal to 5. Both 9, xy and Ap/ppe,, were found to decrease with
increasing b /a, becoming zero at b/a = b* /a ~ 2.3. For b > b*, the ordered phase had #, < 0;
i.e. it was a uniaxial phase in which the shortest molecular axis was oriented parallel to the uni-
axial symmetry axis. Based on these results, the authors argued that the very small values of
Ap, AS, etc., observed at the N-I transition in common nematogens result from a nearly equal
balance between the tendencies to form a hard-rod-like and a hard-plate-like uniaxial phase.
If this is correct, then the use of cylindrically symmetric hard cores in the van der Waals theory
probably makes a major contribution to the quantitative deficiences observed.

TABLE 5. VALUES OF VARIOUS QUANTITIES AT THE N—I PHASE TRANSITION AS PREDICTED BY THE
GENERALIZED VAN DER WAALS THEORY, WITH AND WITHOUT ‘CORRECTION’ FOR THE EFFECTS
OF SHORT-RANGE ORIENTATIONAL ORDER

(In all cases, v,y = —€,/r® and P = 1 atm.)
theoretical predictions theoretical predictions
experimental forx = 3 for x = 2
data for ‘corrected’ ‘corrected’
quantity PAA uncorrected  a« = 0.50  uncorrected o« = 0.25
{60/ (kvpa®)}/104 K — 7.60 10.0 7.73 12.0
Tw/K 409 408.6 408.7 408.4 408.8
VoPaom 0.62 0.450 0.493 0.456 0.556
AP/Prem 0.0035 0.481 0.040 0.116 0.012
AS/(NK) 0.17 6.99 1.01 2.65 0.599
U 0.36 0.974 0.608 0.816 0.476
Na 0.07 0.919 0.265 0.572 0.149
T 4.0 1.61 7.46 1.65 3.53
(dTt/dP)p - 1 sew/ (K /kbar) 48 497 141 184 61

(b) Suggested improvements

Based on the discussion in the previous subsection, it appears that the most promising ways to
attempt to improve the generalized van der Waals theory would be (i) to incorporate short-
range orientational order into the theory in some approximate but self-consistent manner, (ii) to
use molecular hard cores with lower than cylindrical symmetry, and (iii) to devise a method for
evaluating the free energy functional 4*{f(£2)} more accurately. Some brief comments con-
cerning each of these suggested improvements are given in the following paragraphs.

(1) Incorporation of short-range orientational order

Devising a way to ‘build in’ short-range orientational correlations in a tractable and self-
consistent manner is clearly a very difficult but worthwhile task. One possible way to proceed
would be to replace (4) for the pseudo-potential ¢(2, p) by

F(@2,p) =p ff(m de’ Jﬂd'e“ﬂ”“”wy(r, Y) v (1,2, ), (29)

where e=#*"y represents some (necessarily crude) approximation to the hard-core pair correlation

function g®(p, r, 2,Q"). For the complete statistical mechanical self-consistency of the van der

Waals theory to be maintained, the y(r,v) used could not explicitly be p-dependent, nor could

it depend on any parameter that changes with density when f(£2) is held constant. A reasonable

functional form to use for y(r,y) might possibly be inferred from Monte Carlo simulations of
[ 69 ]
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isotropic hard-rod fluids. If no approach of this sort proves practicable, one can always fall back
on some ad hoc method for mimicking the effects of short-range order — perhaps a somewhat more
sophisticated version of the scheme described in §a.

(ii) Use of non-cylindrically symmetric hard cores

The main complication that arises if one uses molecular hard cores with lower than cylindrical
symmetry in the van der Waals theory is that the evaluation of the integral

1(Q,Q) = j dre—roy,,

becomes much more difficult. In particular, the characterization of the surface S(2,92’) on
which e=#*" changes from 0 to 1 becomes a quite difficult problem in solid geometry. Whether
or not /(£2, £2’) can be evaluated in practice depends on how clever one is in choosing a hard-core
shape. In my opinion, a hard ellipsoid would not be a good choice for the hard-core shape; a more
promising candidate would be what can be called a capped parallelepiped, i.e. a parallelepiped
with edges of lengths a, 4, and [ capped on the two faces of area al by a half spherocylinder of
radius ¢ and cylindrical length / and capped on the two faces of area ab by a half spherocylinder
of radius ¢ and cylindrical length 4. (In this limit, 4 = 0, this becomes a spherocylinder of radius a
and cylindrical length /.) The advantage of this shape is that in moving one such object about
another to determine §(£, '), one is always sliding a point on a spherocylinder or a plane over
a planar or spherocylindrical surface. This leads to less complicated geometry than does sliding
one ellipsoid over another. (As a trivial example of the differences encountered, note that the
mutual exclusion volume of two aligned spherocylinders is a spherocylinder whereas the mutual
exclusion volume of two ellipsoids is not an ellipsoid.) Based on some preliminary estimates, it
seems that it may be possible to apply the van der Waals approach to a model system with hard
cores in the shape of such a capped parallelepiped or ‘stretched spherocylinder’.

(iii) Other methods of evaluating A*{ f(2)}

In principle one could derive a more accurate hard-core free energy functional 4*{f(2)} by
solving one of the common integral or integro-differential equations for the pair correlation
function of the hard-core system and then evaluating A*{ f(£2)} by standard statistical mechanical
manipulations. In practice, however, the probability of doing this successfully for a system of
hard rods seems very small at present. One must therefore look for some approximate, tractable
method of evaluating 4*{ f(2)} that is more accurate than scaled particle theory. Two pos-
sibilities have so far been suggested.

Savithramma & Madhusudana (1980) evaluated 4*{f(£)} for hard spherocylinders by using
an extension of a method developed by Andrews (1975) for calculating the hard-sphere equation
of state. In this approach the reciprocal of the thermodynamic activity, a7, is identified with the
probability p that an additional hard particle can be added successfully to the system at some
arbitrary point; p is then evaluated by using simple probabilistic arguments, in which the total
free volume V; in the system is written I; = V' — Nw(p), where w(p) is determined by recourse to
computer ‘experiments’. Savithramma & Madhusudana expressed w(p) as a seven-term power
series in p whose coeflicients were evaluated by demanding that w = 2,/3 v, at the close-packed
density and that the coefficient of p™ (n = 3 to 8) in the density expansion of Pvy/k T for an isotropic
state be equal to the virial coefficient B, determined by Monte Carlo calculation. Using
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A*{f(£2)} calculated in this manner, the empirical pseudo-potential (2), and the two-term
expansion of {{|siny|)), they determined the properties of various model systems with x = 1.0
to 2.90 at the N-I transition, obtaining somewhat better agreement with experiment than that
produced by scaled particle theory. Given the highly approximate free volume arguments used
in deriving the activity a, this improvement clearly results from ‘building in’ the virial equation
of state for isotropic hard spherocylinders. The method is thus limited to systems for which a
large number of virial coeflicients are available for the isotropic hard-core system. In such cases,
the ‘Andrews’ 4*{ f(£2)} could readily be used in place of the scaled particle free energy functional
in the generalized van der Waals theory. I doubt, however, that this would by itself yield greatly
improved results.

Another alternative to scaled particle theory that has been proposed is the y-expansion
technique developed by Barboy & Gelbart (1979, 1980). In this approach, the equation of state
is expanded in a power series in the variable y = vyp/(1 —v,p), i.e.

Py kT = % C,y™, (30)
n>1
where the coefficients C, are related to the usual virial coeflicients B,, By, B,, etc., by
ntl [ g
Bua =% (") G (31)
k=1 \k—1

For isotropic fluids of hard particles with a variety of shapes, the y-expansion — unlike the
ordinary virial expansion — has been shown to converge rapidly enough to calculate the equation
of state accurately at liquid-like densities. It has been used to study the N-I phase transition in
systems of hard parallelepipeds restricted to six discrete orientations (parallel to the +x, +y, +2z
axes of a space-fixed Cartesian coordinate system) and to calculate the equation of state of an
isotropic fluid of hard spherocylinders. (In the latter instance, truncating the expansion after
the y® term yielded results comparable with those of scaled particle theory.) The difficulty in
applying this method to nematic phases of rod-like particles allowed to adopt all orientations is
that the virial coefficients B,, By, By, etc., are generally not available and very hard to calculate.
For a system of hard rods with orientational distribution function f(£2),

B, = f . f FO)F(2y) o f(2,) Bra (@, .., 2,) 2, ... dQ,, (32)

where f,_; is the (n—1)th irreducible cluster integral for n hard rods with fixed orientations
02,92, ..., 2,, respectively. f,(£2,, 2,) has been derived only for hard spherocylinders, cylinders,
prolate ellipsoids and oblate ellipsoids (Onsager 1949; Isihara 1951); £,(£2,, 2,, £2;) has not been
derived for hard rods of any shape. Moreover, it seems highly unlikely that analytical expressions
for f3,, f3s, etc., will ever be derived. As noted by Gelbart & Barboy, however, it may be possible
to derive accurate approximate expressions for f,(£2,, 2,, 2,) at least. If this proves to be so and
if the y-expansion converges sufficiently rapidly in the nematic phase, this approach may turn
out to be a more accurate way to evaluate 4*{ f(£2)}. Atthe moment this is still an open question.

(¢) Extensions of the theory

Cotter & Wacker (19784) extended the van der Waals theory to nematogenic solutions, i.e.
solutions that exhibit a stable nematic mesophase over some range of temperature and com-
position. The extended theory is applicable to mixtures of any number of components with
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spherocylindrical-spherical molecular hard cores. So far, however, it has been applied only to
binary mixtures with effectively spherical solute molecules and rod-like solvent molecules
(Cotter & Wacker 19785), by using an empirical mean field pseudo-potential for the solvent
molecules. (Solute and solvent molecular dimensions were estimated from tabulated van der
Waals volumes, and all other energy parameters were calculated from ratios of heats of vaporiza-
tion.) The temperature-mole-fraction phase diagrams calculated from the theory are in rather
good agreement with experimental data (Martire ¢f al. 1976) for the systems CCl-DHAB,
(CHj,) ,Sn-MBBA, (C,H;),Sn-MBBA, (n-C;H;),Sn-MBBA, and (n-C,H,),Sn-MBBA.

More recently, Gelbart & Ben-Shaul (1982) have extended the theory to nematic mesophases
subject to elastic deformations. For each of the principal elastic constants (i.e. splay, bend and
twist), they derived an expansion of the form

k = Coymi +Cogay +Cpmi + ..., (33)

which they truncated after the term proportional to 7,7, (7, is equal to P,(cos8), as usual).
These expansions were then used to investigate the dependence of the elastic constants on various
molecular parameters. When experimental values are used to determine %,(7") and #,(7T), the
predictions of the theory are in reasonably good agreement with experimental observations.

Also quite recently, Savithramma & Madhusudana (19824) have extended the van der Waals
approach to systems of disc-like nematogens, using molecular hard cores in the shape of a right
circular cylinder of radius a and length [ and the empirical pseudo-potential (2). This model
system was shown to exhibit a hard-rod-like nematic mesophase (7, > 0) when ¥ =1/2a > 1
and a hard-disc-like nematic mesophase (7, < 0) whenx < 1. Moreover, when various properties
of the system at the N-I transition (e.g. Ap/ppen and AU/(NET')) were plotted against x, the
curves were approximately symmetric about x = 1, suggesting that the properties of the N-I
transition for disc-like nematogens are comparable in many respects with those for rod-like
nematogens.

Future extensions of the van der Waals theory that would in my opinion be particularly
desirable include (1) extending the theory to allow for the possibility of smectic as well as nematic
ordering, and (2) modifying the theory to take into account the flexibility of the molecular ‘end
chains’ of real nematogens or smectogens. As a preliminary endeavour before attempting either
of these extensions, a student of mine, L. Petrone, is working at present on a lattice version of the
van der Waals theory that incorporates end-chain flexibility in a fairly realistic manner and can
treat smectic ordering.

(d) Concluding remarks

In conclusion, I should like to return to a point emphasized in the introduction, namely that the
van der Waals theory isintended to be a ‘chemist’s’ theory to be used to study the relation between
molecular structure and mesomorphic behaviour. In my opinion there are two main require-
ments that a successful theory of this sort must meet: (i) although quantitative agreement between
theory and experiment is certainly not required, the agreement must be good enough so that one
can believe qualitative trends and explanations suggested by the theory — even rather subtle ones;
(ii) it must be possible to relate the parameters of the model system to the molecular size, shape,
polarity, polarizability, etc., of a particular mesogen in some reasonably straightforward manner.
The van der Waals approach with the empirical pseudo-potential (2) satisfies requirement (i)
nicely, but falls far short of meeting requirement (ii) because there is no clear way to relate the
value of the parameter v, to the characteristics of a particular molecule. On the other hand, the
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generalized van der Waals theory in its present state has some trouble with requirement (i) owing
to its severe overestimate of the orientation dependence of the mean field potential. This latter
problem can, however, clearly be corrected. (The only question is whether it can be corrected in
a less crude and arbitrary manner than that described in §4.) Furthermore, although the
generalized van der Waals approach does not completely satisfy requirement (ii) at present, it
comes closer, in my opinion, than any other molecular theory proposed to date. In short,
although much remains to be done, a start has clearly been made toward the goal of developing
a successful ‘chemical’ theory of thermotropic mesomorphism. Modifying the van der Waals
theory to take into account molecular flexibility, non-cylindrically symmetric molecular shapes,
and the existence of smectic order would clearly all be large steps toward this goal.
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144 MARTHA A. COTTER

Discussion

J. D. Litster (M.1.T., Cambridge, Massachusetts, U.S.A.) I have two questions.
(1) How much better is Professor Cotter’s approach than the simple Maier—Saupe model?
(2) Can Professor Cotter estimate the difference between the first order transition temperature
and the extrapolated second order transition from short range order measurements in the isotropic
phase?

MarTHA A. COTTER.

(1) Ifone uses the van der Waals approach with an empirical mean-field potential and treats
the hard-core length: width ratio and the energy parameters v, and v, as adjustable parameters,
one obtains agreement with experiment comparable with that obtained from the simple Maier—
Saupe theory — better agreement in some respects, worse in others. I do not think this is of great
significance, however. As I have tried to indicate, what I think the van der Waals theory is
better for is studying the relation between molecular structure and mesophase stability and
properties. On the other hand, the van der Waals approach is no doubt worse than the simple
Maier—Saupe approach for studying the N-I phase transition per se (i.e. in the context of the
modern theory of phase transitions) because the former exaggerates the strength of the first-order
N-I transition even more than the latter.

(2) One can no doubt calculate 7, — 7* from the van der Waals theory, although I have not
done so. Since the theory does not consider short-range orientational order in the isotropic phase
and greatly overestimates the strength of the N-I transition, I suspect that it will also greatly
overestimate T, — 7%,

Lin LEx (Institute of Physics, Chinese Academy of Sciences, Beijing, China). We have recently extended
the Landau-de Gennes theory to treat the pressure effects of nematics. Now,
G(T,P) = Go(T,P) +3a{T—T*(P)}S*—1B(P)S3+1C(P) S

For PAA (B, C independent of P), our theory is able to explain all the existing pressure experi-
ments (not too close to the N-A transition). Above P = 472 MPa and 258 < 7" < 251 °C, a re-
entrant isotropic phase is predicted to exist (Lin Lei & Liu Jiagang, Kexue Tongbao 27, 784 (1982);
Molec. Cryst. lig. Cryst. (in the press)). It will be very interesting to check this result with molecular
calculations. Since Professor Cotter’s van der Waals theory is simple and tractable, relatively
speaking, I wonder if it can be used to calculate the Ty;(P) curve at high pressure (ca. 472 MPa)?
If so, has this been done yet?

MarTHA A. CoTTER. I have not calculated the N-I transition temperature at high pressures
from the generalized van der Waals theory, although it can readily be done. However, Savi-
thramma & Madhusudana (Molec. Cryst. liq. Cryst. (in the press)) have calculated Ty (P) for
pressures up to 600 MPa, using the van der Waals approach with an empirical mean-field
potential. They did not observe a re-entrant isotropic phase.
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